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00185-Rama, and INFN, Sezione d i  Roma, Roma, Italy 
t Departamento Fisica Te6nca. Facultad de Fisicas, Universidad Complutense, 
28040-Madrid, Spain, and lnstituto de Fisica Fundamental, Madrid, Spain 

Received 18 May 1992 

Abmact. In this work we correlate the symmetry grauQ of the continuous transformations 
of the Toda lattice to that of the Koneweg.de Vnes equation. We show haw, by taking 
into account the continuous limit of the Tada, the four-parameter symmetry group of the 
Toda is contained in that of the KdV equation. By an inverse process, discretization of the 
symmetry group of the KdV, we find a discrete element of the symmetry group of the Toda 
lattice, which gives, by symmetry reduction, its soliton solution. 

1. Introduction 

In a recent article [l] the construction of the symmetry group for differential difference 
equations was introduced and applied, as an example, to the Toda lattice equation: 

(1) 

This equation is the prototype of the nonlinear differential difference equations 
(DDE) which are integrable via the spectral transform, possess an infinity ofconservation 
laws and of higher symmetries, can be written in Hamiltonian form, etc. In the case 
of nonlinear partial differential equations (PDE) the best known integrable equation is 
the Korteweg-de Vries equation (KdV): 

( n )  = e u i n - l ) - " ( n ) -  " ( " ) - " ( " + I )  
7 e 

q, = qnx +6qqx. (2) 
The two equations (l) ,  (2) are related as there exists a continuous limit, i.e. when 

the lattice spacing A goes to zero, which reduces the Toda lattice to the potential Kdv 
equation, the Kdv written in terms of the potential v(x, t )  = I" q(x', I )  dx': 

U,, = vxx, +6vxvxx. (3 )  

(4) u(n,  7)' -fAU(X, I )  x = ( n  - T ) A  24 

In fact, by defining 
f = - L A 3 ~  

equation (1) is reduced, by carrying out a Taylor expansion around the point x, to (3) 
up  to terms of order A2. In the limiting process we expand the exponential factor and 
this gives the nonlinear term appearing in the potential KdV equation (3). 

0305-4470/92/150975+05$04.50 @ 1992 IOP Publishing Ltd L975 
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(7) 

Taking into account this result, a few questions come immediately to mind: which 
is the relation between the corresponding symmetry groups? Can we gain some 
information about the symmetry group of one equation by knowledge of that of the 
other? The content of this letter is devoted to answering, at least partially, these 
questions. 

To do so, and to fix the notation, here we report the symmetry vector of (1) and 
(3) as one can find in the literature or obtain by standard techniques [ 2 ] ;  in the case 
of the Toda lattice equation (1) we have 

( 5 )  ij = (a,+ a 2 ~ ) J , + ( 2 n a 2 +  L ~ , T +  a4)JU(”, , )  

where a,, a2.  a,, a4 are constant parameters, while for the potential Kdv (3) we have 

( 6 )  

where p l ,  p2, PI, p4 are constant parameters and y is an arbitrary function of I. 
In correspondence with each one-parameter symmetry vector of ( 5 )  and (6) we can 

construct a one-parameter group of transformations by exponentiating the vector field. 
We have 

(PI + P ~ ~ + ~ ~ I X ) J ~ + ( P ~ + P I ~ ) J , + (  - ~ P , u - h x +  Y ( l ) ) J ,  

U ’ ( f l ’ ,  7’)  = U(n, 7 )  U‘( n’,  7 ’ )  = U( fl, 7 )  + 2nh2 

= 7  = 7  

u’(n’,  T ’ )  = u(n,  T ) +  TA, U ’ ( f l ’ ,  T ‘ ) = U ( n , T ) + A g  

u’(x’, 1 ’ )  = u(x, 1 )  u’(x’ ,  t ’ ) = u ( x ,  l ) - iXp2-k lp:  

= X  

(8) = f 

= u’(x’, 1’ )  = u(x, I )  e-*>’, u‘(x’, 1‘ )  = u(x, I) 

= X  

u’(x‘, 1 ’ )=u(x ,  1 ) + y ( 1 )  

where {A,}f=,, {pa}:- ,  are two sets of real group parameters and by, say V,,, we mean 
the group transformation obtained by choosing in the vector field v^ only the parameter 
a, different from zero, which, with no restriction, we can set equal to 1. 

Next we consider the one-parameter transformations for the potential Kdv equation 
which one obtains starting from those of the Toda lattice (7), and then look for discrete 
transformations of the Toda obtained as discretization of the one-parameter transforma- 
tions (8). There follows a discussion of the results obtained and of future perspectives 
in this field. 

We now perform the continuous limit for A +  0 of the one-parametertransformations 
(7) of the Toda lattice, As the corresponding limit at the level of the equation is well 
defined and gives rise to the potential Kdv equation, we can say that the resulting 
one-parameter transformations will leave the potential KdV invariant. As we shall see, 
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in effect, the resulting one-parameter transformations are a subclass of the possible 
transformations of the potential Kdv. 

Let us start from Vm, in equation (7) and take into account the definitions (4) 
which we will rewrite in the form 

24 
T =  - - f  

241 x n = --+- 
A3 A A’ ’ 

A 
2 

U ( f l , T ) = - - l J ( X , f )  

Introducing (9) into V,,, we get 

1’ = f - A-’ AJ24 x’ = x - AA, 

u’(x’, f’) = o(x, f ) .  

(9) 

We can now choose A ,  as a function of A in such a way as to get a finite result. If 
A!  is constant then when A+O (10) will give just the identity transformation but, by 
choosing AA, to be constant, say p , ,  then (10) provides the transformation W,, for 
the potential Kdv. The choice A2A, constant is not admissible as, when A+O, (10) will 
give rise to diverging x’. 

We now consider together V,, and Vm3; in such cases we get 

1‘ = f e*‘ x’= x+24f(e*2-l)/Az 

u‘(x’, f ’ ) =  V(X, f)+4A2(24f -AZx)/A4 

and 

t ‘=  f x‘= x 

u’(x’, f ‘ )= u(x, f)+48A3f/A‘ 

(11) 

Let us analyse ( i i ) .  A2 constant is not admissibie as diverging terms wiii appear, 
so a first natural choice is to set 24(eA2- ])/A2 equal to a constant, say p2.  In such a 
case (11) would become 

t ‘ =  f 

u‘(x’, 1’) = U(X, f ) - a ~ 2 x + 4 p L 2 f / A 2 - ~ p L L : t .  

x’ = x + p2f 

The transformation (13) looks like W,, but as A + O  it still contains a divergent 
term. However (12) provides us with a diverging term of the same form as that of (13); 
then, by choosing A, = -pZA2/12 and combining transformations (12) and (13)  we get 
W,,. By the choice 96A2/A4 and 48A3/A4 constant, say ps.  both (11) and (12) reduce 
to W,, with y ( f )  = 1. 

In the same manner we can analyse V,, and by choosing -2A,/A constant, say 
ps,  we get again Wo5,  however, this time, with y(f)  constant. 

It is worthwhile to notice here that the three transformations, WPL, Wo2 and W,,,  
we have obtained in this way, form a subgroup of the whole group of transformations 
of the potential Kdv. 

in  principle, to recover the shift operator from a differential operator we need to 
consider an infinite series of terms. This would imply that the transformation (4) is 
not sufficient to define uniquely the Toda lattice starting from the potential Kdv. 
Naturally the relation between (u(x. f ) .  x, 1)  and (u(n, T), n, T) given by (4) is well 
defined and can be applied to pass from one-parameter transformations of the potential 
Kdv to those of a DDE, which apriori may not he the Toda lattice. Even so, we consider 
it worthwhile to carry out these calculations because, when they give results valid for 
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the Toda lattice, these are very interesting as they are discrete transformations, objects 
which cannot be obtained by any infinitesimal technique. 

Let us consider WO,  and apply to it the transformation (4); we get 

n’=  n + p,/A T‘=T 

U ’ ( f l ’ ,  7‘) = U ( n ,  7 ) .  
(14) 

To obtain a consistent transformation we must require that p , / A  be a constant and 
in particular, an integer number. In such a way (14) is a discrete transformation for 
the Toda lattice whose existence can be proved by direct computation. 

W02 gives 

n ’ =  n -&A2p2r T”T 

(15) 

As T is a continuous variable the only possible choices of p2,  such that (15) is 
coherent, are such that p2A2+0; if we choose p2 constant, then (15) provides the 
identity transformation. 

Also in the case of W,, the only consistent transformation is the identity transforma- 
tion, while WOa gives 

u’(n’ ,  ~ ’ ) = u ( n ,  r ) + ~ A 2 p L 2 n - ~ A 2 p 2 ~ ( 1 + ~ A 2 p 2 ) .  

n’=n-24p4/A3 r‘= 7-24k4/A3 

U ‘ ( f l ’ , T ’ ) ’ U ( f l , T ) .  
(16) 

This transformation gives a proper result as long as we choose -24p4/A3 integer, 
say Ab.  Combining (16) with (14) with a proper choice of the group parameters involved 
we can obtain from them V,, . 

WOs gives 

n l =  n 7“T 

(17) 

The resulting transformation depends on the arbitrary function y (  -&A’T). Due to 
the arbitrariness of the function y we can write it as U’= U +  A s g ( r ) .  However the only 
possible transformations of this form are V,, and V,, corresponding to g constant or 
linear in T. 

As we said above, by a limiting procedure, the continuous limit of the transforma- 
tions of the Toda lattice provides a subgroup of the whole group of point transforma- 
tions of the potential Kdv. This is due to the fact that in general a discrete equation 
has a continuous symmetry group of lower dimension than that of the corresponding 
partial differential equation. This is even more clear in the case of the equation: 

U, = u ( n ) { [ u ( n  - l ) u ( n ) + u ( n -  l ) + u ( n  -2) -61 

u’(n’, ~ ‘ ) = u ( n ,  T ) - ~ A ~ ~ Y ( - & T ~ ’ ) .  

- [ u ( n + l ) u ( n ) + u ( n + l ) + ~ ( n + 2 ) - 6 1 }  (18) 

which is an integrable nonlinear DDE of the same hierarchy as the Toda lattice itself 
[3]. Even if completely integrable, (18) has only a continuous symmetry (i.e. is only 
invariant under r-translations and its continuous limit) the Kdv equation (2), is obtained 
as A +  0 with the transformation 

U( n, r )  = 1 + A*q( x, I )  
(19) 

x = n A  t = - 2 ~ ) ~ .  
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Equation (18) has in itself polynomial nonlinearities and thus the transformation 
(19) gives, when introduced into the Kdv, a better approximation to (18). Even so 
when we transform the symmetry group of the Kdv according to (19) some of the 
transformations give rise to wrong discrete point transformation for (18) while the 
continuous part is correctly recovered. 

The inverse transformation allows us to a discrete transformation for the Toda 
lattice. This transformation could have been obtained by a direct analysis of the Toda 

r, u'(n' ,  ~ ' ) = u ( n ,  r ) ]  and the r-translation V,,, we can, setting A I  = am/sinh(a) with 
a an arbitrary parameter, obtain that the variable [= n(a/sinh a ) - ~  is a symmetry 
variable for our equation. By reducing the Toda lattice with respect to it we obtain: 

(20) 

-... -.:-.. --I.:-- cqunuu~r. L ~ K I I L ~  iiiio accoiiiii ihis discreie irarisfoormaiion i n ' =  n + m, T ' =  

uCC =exp{u([-a/sinh a)-u([)}-exp{u(g) - u([+a/sinh m ) ]  

? h X C  so!utie!? is the we!! knew! sn!itnn .o!&ox of the Toda !.%&e [41 

1 + exp[2(sinh(a)[ - a)] 
l+exp[2 sinh(a)[] ' 

u(n ,~ )=u( [ )= In  

So, concluding, the analysis of the relation between continuous point transfonna- 
tions of PDE and DDE allowed us to get, from the PDE discrete symmetries of the DDE. 
Eewever ir? !his process nr?e a!so gets transferrr?a!ions which do net !ewe the =nn 
invariant. This opens up the following questions: 

1. Are there some ways of discretizing the PDE which project the group of its point 
transformations into that of the DDE? 

2. Are we able in this way to get all discrete symmetries of the DDE? 
Work on answering these questions is in progress. 

This work has been partially supported by the Italian Ministry of Public Education, 
the Istituto Nazionale de Fisica Nucleare (Sezione di Roma), CICYT (Spain), 
Comunidad Aut6noma de Madrid (Spain) and NATO through a collaboration 
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